Ez a rövidfilm a tudomány mai állása szerint ismert világot mutatja be. A szatellitek, holdak, bolygók, csillagok és galaxisok megjelenítése a csillagászati mérések, megfigyelések alapján meghatározott, valós elhelyezkedésüket és méretarányukat mutatja.
Az ember csak egy kis porszem egy porszemen a homokviharban...
Az első dimenzió a vonal. Ha veszünk egy valamilyen irányú vektort, amely nem nullvektor, az valamilyen hosszúságú. Van valahol a térben egy csúcsa és egy kiindulópontja. Ha gondolatban kétszeresére, háromszorosára stb. nyújtjuk ezt a vektort, valamint hátrafelé is meghosszabbítjuk, hogy minden lehetséges hosszúságot felvegyen (még a zéró hosszat is, a nullvektor révén), akkor egy összefüggő, egyenes vonalat kapunk, melynek egy hosszdimenziója van. Minden olyan vektor, ami ennek a vonalnak a pontjait írja le, párhuzamos egymással. Noha papíron bármilyen vékony vonalat rajzolunk, az valamennyire széles is lesz (hogy látszódjon), ennek az idealizált vonalnak azonban nincs szélessége.
A sík kétdimenziós. Van hossza és szélessége, de nincs vastagsága – nagyjából úgy, mint egy papírnak (bár annak is van valamelyes vastagsága). A fentinél kicsivel nehezebb vektorokkal elképzelni a síkot. Ha veszünk gondolatban egy vektort, és elmozgatjuk úgy, hogy a kiindulópontja az előbbi vektor csúcsához kerüljön, és egy olyan új vektort alkotunk, melynek kiindulópontja az előző kiindulópontja, a csúcsa pedig az elmozgatott második vektor csúcsa, azzal megoldottuk a két vektor összeadását. Ha mindezt két nem párhuzamos vektorral tesszük, akkor a kettő közül valamelyiknek vagy mindkettőnek a nyújtásával minden pontot meg tudunk határozni, és ezek a pontok együttesen alkotják a síkot.
Az általunk érzékelt tér háromdimenziós. Elképzelhetünk olyan vonalat, amely keresztülhalad a síkon. Az egyes síkok szendvics módjára vannak „összetapadva”. Ahhoz, hogy a tér valamely pontjába eljussunk, a vonal mentén elmehetünk a szükséges magasságba, a síkhoz érve pedig elérhetjük a kívánt pontot. Ekkor már három vektorról beszélhetünk: az egyik révén a vonal mentén haladhatunk, a másik kettővel pedig eljuthatunk a megfelelő síkban a kívánt ponthoz.
A négydimenziós tér meghatározásához tehát négy vektorra van szükség. Ugyanúgy lehet létrehozni a háromdimenziós terek együtteséből, mint ahogy ezeket a kétdimenziós síkokból megalkottuk. Ezt az eljárást bárhányszor megismételhetjük, így még több dimenziós tereket hozhatunk létre.
A sík kétdimenziós. Van hossza és szélessége, de nincs vastagsága – nagyjából úgy, mint egy papírnak (bár annak is van valamelyes vastagsága). A fentinél kicsivel nehezebb vektorokkal elképzelni a síkot. Ha veszünk gondolatban egy vektort, és elmozgatjuk úgy, hogy a kiindulópontja az előbbi vektor csúcsához kerüljön, és egy olyan új vektort alkotunk, melynek kiindulópontja az előző kiindulópontja, a csúcsa pedig az elmozgatott második vektor csúcsa, azzal megoldottuk a két vektor összeadását. Ha mindezt két nem párhuzamos vektorral tesszük, akkor a kettő közül valamelyiknek vagy mindkettőnek a nyújtásával minden pontot meg tudunk határozni, és ezek a pontok együttesen alkotják a síkot.
Az általunk érzékelt tér háromdimenziós. Elképzelhetünk olyan vonalat, amely keresztülhalad a síkon. Az egyes síkok szendvics módjára vannak „összetapadva”. Ahhoz, hogy a tér valamely pontjába eljussunk, a vonal mentén elmehetünk a szükséges magasságba, a síkhoz érve pedig elérhetjük a kívánt pontot. Ekkor már három vektorról beszélhetünk: az egyik révén a vonal mentén haladhatunk, a másik kettővel pedig eljuthatunk a megfelelő síkban a kívánt ponthoz.
A négydimenziós tér meghatározásához tehát négy vektorra van szükség. Ugyanúgy lehet létrehozni a háromdimenziós terek együtteséből, mint ahogy ezeket a kétdimenziós síkokból megalkottuk. Ezt az eljárást bárhányszor megismételhetjük, így még több dimenziós tereket hozhatunk létre.